Section 3.1: Vector Spaces

A **vector space over** \mathbb{R} is a set V of objects (called **vectors**), together with two operations, addition and scalar multiplication, which satisfy the following:

- V is closed under addition.
- ② V is closed under scalar multiplication.
- \bullet For all $\mathbf{x}, \mathbf{y} \in V$, we have $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- \P For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$.
- **5** There exists $\mathbf{0} \in V$ such that for all $\mathbf{x} \in V$, we have $\mathbf{x} + \mathbf{0} = \mathbf{x}$. (The vector $\mathbf{0}$ is called a **zero vector** for V.)
- **6** For each $\mathbf{x} \in V$, there exists $\mathbf{y} \in V$ such that $\mathbf{x} + \mathbf{y} = \mathbf{0}$. (\mathbf{y} is called an **additive inverse** of \mathbf{x} .)
- \bigcirc For all $\mathbf{x} \in V$, we have $1\mathbf{x} = \mathbf{x}$.
- § For all $\alpha, \beta \in \mathbb{R}$ and all $\mathbf{x} \in V$, we have $(\alpha \beta)\mathbf{x} = \alpha(\beta \mathbf{x})$.
- **9** For all $\alpha \in \mathbb{R}$ and all $\mathbf{x}, \mathbf{y} \in V$, we have $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$.
- For all $\alpha, \beta \in \mathbb{R}$ and all $\mathbf{x} \in V$, we have $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$.

Examples of Vector Spaces

- For all n, \mathbb{R}^n is a vector space.
- ② For all $m, n, M_{m,n}(\mathbb{R})$ is a vector space.
- **1** The set $\mathcal{P}(\mathbb{R})$ of all polynomials in one variable x with real coefficients is a vector space.
- The set $\mathcal{P}_n(\mathbb{R})$ of all polynomials of degree at most n in one variable x with real coefficients is a vector space.
- **5** The set $\mathcal{F}(\mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} is a vector space.

Properties of Vector Spaces

Theorem 3.7: Let *V* be a vector space.

- The zero vector **0** is unique.
- ② Given $\mathbf{x} \in V$, its additive inverse is unique.
- For all $\mathbf{x} \in V$, we have $0\mathbf{x} = \mathbf{0}$.
- **5** For all $\alpha \in \mathbb{R}$, we have $\alpha \mathbf{0} = \mathbf{0}$.
- **o** For all $\mathbf{x} \in V$, the vector $(-1)\mathbf{x}$ is the additive inverse of \mathbf{x} .